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1 The Need for Attitude Determination

The assignment of time stamps to image centroids is only the ¯rst step in deriving
a stellar position and parallax from FAME data. These times must then be used
to obtain one-dimensional positions, or abscissae, along a great-circle scan. This
requires accurate knowledge of the spacecraft attitude as a function of time. The
abscissae form an internally rigid system with an undetermined zero point. In the
¯nal sphere reconstruction phase of the data analysis, all of the great-circle scans are
interconnected to form a global rigid system.

The along-the-scan attitude, or roll angle, is clearly the most critical component
of the attitude, since errors in the roll angle have a ¯rst order e®ect on the stellar
abscissae. The abscissae must also be corrected for the ¯eld rotation, which arises
from the pitch and yaw of the spacecraft. This correction is the height above ¯eld
center, times the cosine of the ¯eld-rotation angle, and therefore is second-order in
nature.

The method of obtaining the time-dependent attitude from the stellar data is the
subject of this note. The accuracy of this solution is assessed through a software
simulation. In particular, e®ect on attitude determination of the use of attitutude-
control thrusters is addressed.

2 The Purpose of the Second FOV

Choosing an arbitrary star as the provisional zero point of a great circle scan, the
instantaneous roll angle can be determined from the data by measuring the relative
angle between the ¯rst and second star, then the second and third, and so on until
the ¯rst star is seen again after a complete rotation. Adding up these relative angles
gives the along-the-scan angle of any star relative to the ¯rst. This method is not
satisfactory, however, because there is an accumulating measurement error as one
progresses around the great circle. It is true that when the ¯rst star is seen for the
second time, one can impose the constraint that the sum of all relative angles to
that point is equal to 360±. The accumulated error can then be uniformly distributed

1



around the great circle, but higher order deviations from the true attitude will still
be present. The excursion from the true roll angle will be largest for the point 180±

from the zero point.
The HIPPARCOS consortium solved this problem by introducing a second ¯eld

of view separated from the ¯rst by a very stable angle known as the basic angle. One
may imagine performing a harmonic decomposition of the attitude error as a function
of angle along the scan. Each time a star seen in the ¯rst FOV is subsequently seen
in the second, it may be concluded that the spacecraft has rotated through an angle
equal to the basic angle. These constraints give rise to a set of normal equations
which may be solved for the Fourier coe±cients. This procedure has been referred to
as the great circle reduction and has the e®ect of transferring errors from the spatial
domain to the spatial-frequency domain. The attitude errors are therefore uniformly
distributed in angle, and do not bunch up at the anti node of the great-circle scan. If
done correctly, the variance of the one-dimensional abscissa of a star, which includes
the uncertainty in attitude at that point, is comparable to the variance of the relative
separation between two nearest-neighbor stars. The ratio of these variances is known
as the non-rigidity factor, V , and is always greater than or equal to one.

The principle di®erence between FAME and HIPPARCOS is FAME's lack of an
instantaneous FOV within which the relative angles between stars can be measured.
Thus, a slightly di®erent approach suggests itself, where deviations in the angular
velocity are computed, rather than direct corrections to the attitude. The instanta-
neous roll angle may then be computed by integration of the derived angular velocity
function. This di®erence in implementation is unlikely to signi¯cantly modify the
estimated mission accuracy. Thus, Germain (1995) used the HIPPARCOS model to
estimate the accuracy of FAME, de¯ning an e®ective ¯eld of view (EFOV) for FAME
in a mathematically precise way. This permitted the ¯nal catalog accuracy to be
estimated in a manner similar to the that used for HIPPARCOS, requiring only the
assumed centroiding precision as input.

3 Determination of Along-the-Scan Attitude

In the current incarnation of FAME, the focal plane is populated with two banks of
CCDs. The angle between these CCD banks e®ectively gives us a second basic angle.
This may be used to form additional constraints, improving the rigidity of the great-
circle reduction. Let ° denote the large, » 65± angle de¯ned by the compound mirror
assembly, and let µ represent the angle between the outputs of the two banks of CCDs
in the focal plane. The non-rigidity factor resulting from di®erent combinations of °
and µ was studied by Makarov, H¿g, and Lindegren (1996).

According to Mook (1998, private communication), perturbations in the angular
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velocity are expected to occur at harmonics of the nominal rotational frequency, and
have amplitudes not larger that 6 mas/s. Therefore, the angular velocity may be
expanded in a Fourier series as follows:
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where !± is the average rotational frequency.
The following times are measured for any star which is observed on both CCDs

and in both FOVs:

time FOV CCD bank
t± 1 1
t1 1 2
t2 2 1
t3 2 2

Using these observations, the coe±cients in equation (1) can be determined from
the following normal equations:

Z t1

t±
!(t) dt = µ (a)

Z t2

t±
!(t) dt = ° (b)

Z t3

t±
!(t) dt = ° + µ (c)

Z t2

t1
!(t) dt = ° ¡ µ (d) (2)

Z t3

t1
!(t) dt = ° (e)

Z t3

t2
!(t) dt = µ (f)

A numerical simulation of this procedure has been conducted using only equations
(2a) and (2b), with ° = 65± and µ = 1:6±. Normally-distributed errors were added to
the transit times of 1,000 uniformly-spaced stars spanning a single great-circle scan.
A rotation model was assumed which consisted of periodic angular accelerations at
several harmonics of a nominal 20 minute rotational period. This software provides a
convenient tabular format for changing the input rotation model, and a °ag may be
set to introduce random variations in frequency, amplitude and phase of the rotation
perturbations. For this test, results of ten such random variations of the input model
were averaged.

The input rotation models were recovered in the simulation with the non-rigidity
factors shown in the table below. The ¯rst column shows the length of the scan
that is uninterrupted by thruster ¯rings. The non-rigidity factor is a measure of the
accuracy of attitude determination, and depends upon the number of stars used in
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the great circle reduction, and on the size of the basic angles. It is de¯ned as a ratio
of variances. Thus, for a 425± scan, attitude uncertainty contributes only 7.2% to the
single-observation error. Note that the theoretical limit of the non-rigidity factor is
unity.

scan length non-rigidity (V)
425± 1.15
335± 1.28
245± 1.99
155± 2.13

4 Other Attitude Angles

The pitch and yaw angles are needed to compute a second-order correction to the
abscissae. Let Ã be de¯ned as the yaw, or rotation about the line of sight of the ¯rst
bank of CCDs in the ¯rst FOV. This leads directly to a rotation of the ¯eld seen by this
bank of detectors. The pitch, », is de¯ned as rotation about an axis perpendicular to
this line of sight and in the plane de¯ned by the two look directions. This produces a
¯rst-order change in the height at which a stellar image transits the FOV. The e®ect of
slow variations in these angles is illustrated in the ¯gure below. The arrows represent
the orientation of the detector array. The horizontal line represents the mean value
of », and de¯nes a reference great circle to which all abscissae are referred. Both »
and Ã are expected to be on the order of a few arcminutes.
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The strategy for solving for » and Ã from the stellar data will be to assume that
these angle vary smoothly enough that they can be expressed as series expansions.
The coe±cients will be obtained from a solution of the normal equations developed
below. Note that we can de¯ne a di®erent pair of angles, »0 and Ã0, with respect to the
second bank of detectors, or the second FOV. Let Á represent the angular separation
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of this second look direction from the ¯rst detector bank in the ¯rst FOV. In practice,
Á will be some combination of ° and µ. It can be shown that the following identities
obtain:

sin(»0) = sin(») cos(Ã) cos(Á)¡ sin(Ã) sin(Á)

sin(Ã0) = sin(») cos(Ã) sin(Á) + sin(Ã) cos(Á) (3)

or to ¯rst order,

»0 = cos(Á)» ¡ sin(Á)Ã

Ã0 = sin(Á)» + cos(Á)Ã (4)

The height (ie. cross-scan position) at which an image transits a given bank of
CCDs in a given FOV contains information about the angles »0 and Ã0 which can be
related to » and Ã through equations (4). As the spacecraft rotates, and a star is
seen by both CCD banks and through both FOVs at the times t1 { t4, the following
heights, h(t), are observed:

Measured height FOV CCD bank
h1(t1) 1 1
h2(t2) 1 2
h3(t3) 2 1
h4(t4) 2 2

The following normal equations are then obtained from the four observations of
each star:

h2(t2)¡ h1(t1) = »(t1)¡ cos(µ)»(t2) + Ã(t2) sin(µ)

h3(t3)¡ h1(t1) = »(t1)¡ cos(°)»(t3) + »(t3) sin(°)

h4(t4)¡ h1(t1) = »(t1)¡ cos(° + µ)»(t4) + Ã(t4) sin(° + µ)

h3(t3)¡ h2(t2) = cos(µ)»(t2)¡ sin(µ)Ã(t2)¡ cos(°)»(t3) + sin(°)Ã(t3) (5)

h4(t4)¡ h2(t2) = cos(µ)»(t2)¡ sin(µ)Ã(t2)¡ cos(° + µ)»(t4) + sin(° + µ)Ã(t4)

h4(t4)¡ h3(t3) = cos(°)»(t3)¡ sin(°)Ã(t3)¡ cos(° + µ)»(t4) + sin(° + µ)Ã(t4)

Having solved for » and Ã as functions of time, one can use the exact equations (3)
to solve for »0 and Ã0 for each observation. These are then used to project the observed
image centroid onto the reference great circle.
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